Redined

Network of Educational Information logoNetwork of Educational Information logo
    • twitter
    • English 
      • Español
      • Català
      • English
      • Euskera
      • Galego
  • Login
  • About Redined
    • What is Redined
    • Directory
  • Help
    • How to search in Redined
    • Tutorial
  • Document submission
    • Who can submit documents?
    • Submit your documents
    • Intellectual property
  • Statistics
    twitter
  • English 
    • Español
    • Català
    • English
    • Euskera
    • Galego
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All RedinedAuthorsCorporate AuthorsTitlesTopicsOther TopicsEducational LevelsCollectionsPeriodical TitlesThis CollectionAuthorsCorporate AuthorsTitlesTopicsOther TopicsEducational LevelsCollectionsPeriodical Titles

My Account

Login

Statistics

View Usage Statistics

Imputación de datos perdidos en las evaluaciones diagnósticas educativas

URI:
http://hdl.handle.net/11162/4173
Full text:
http://www.psicothema.com/pdf/39 ...
View/Open
01720123016847.pdf (652.8Kb)
Education Level:
Educación Superior
Document type:
Artículo de revista
Exportar:
Exportar a RefworksBibtex
Compartir:
Imprimir
Estadísticas:
View Usage Statistics
Metadata:
Show full item record
Author:
Fernández Alonso, Rubén; Suárez Álvarez, Javier; Muñiz Fernández, José
Date:
2012
Published in:
Psicothema. 2012, v. 24, n. 1 ; p. 167-175
Abstract:

En la evaluación diagnóstica de sistemas educativos se utilizan habitualmente autoinformes para recoger datos de carácter tanto cognitivo como oréctico. Es muy frecuente que por distintas razones en estos autoinformes falten algunos de los datos del alumnado. El objetivo del presente trabajo es comparar el funcionamiento de diferentes métodos de imputación de datos perdidos en el contexto de la evaluación de sistemas educativos. Sobre una base de datos de 5.000 sujetos se simularon 72 condiciones: tres tamaños de pérdida de datos, tres mecanismos de pérdida y ocho métodos de imputación de los datos perdidos. La cuantía de las pérdidas se establecieron en un 5, 10 y 20 por ciento. Los mecanismos de pérdida fijados fueron: aleatoria, moderadamente condicionada y fuertemente condicionada. Los ocho métodos de imputación utilizados fueron: eliminación, reemplazo por la media de la escala, por la media del ítem, por la media del sujeto, por la media del sujeto corregida, regresión múltiple e imputación por el algoritmo Esperanza-Maximización (EM) con y sin variables auxiliares. Los resultados indican que la recuperación de los datos es más precisa cuando se emplea una combinación adecuada de diferentes métodos de recuperación de los datos perdidos. Cuando se trata de un caso incompleto funciona muy bien la media del sujeto, mientras que para datos completamente perdidos es recomendable la imputación múltiple con el algoritmo EM. El uso de esta combinación resulta especialmente recomendable cuando la pérdida de datos es mayor y su mecanismo de pérdida está más condicionado. Finalmente, se discuten los resultados y se comentan algunas líneas futuras de investigación que se abren a partir de los resultados obtenidos.

En la evaluación diagnóstica de sistemas educativos se utilizan habitualmente autoinformes para recoger datos de carácter tanto cognitivo como oréctico. Es muy frecuente que por distintas razones en estos autoinformes falten algunos de los datos del alumnado. El objetivo del presente trabajo es comparar el funcionamiento de diferentes métodos de imputación de datos perdidos en el contexto de la evaluación de sistemas educativos. Sobre una base de datos de 5.000 sujetos se simularon 72 condiciones: tres tamaños de pérdida de datos, tres mecanismos de pérdida y ocho métodos de imputación de los datos perdidos. La cuantía de las pérdidas se establecieron en un 5, 10 y 20 por ciento. Los mecanismos de pérdida fijados fueron: aleatoria, moderadamente condicionada y fuertemente condicionada. Los ocho métodos de imputación utilizados fueron: eliminación, reemplazo por la media de la escala, por la media del ítem, por la media del sujeto, por la media del sujeto corregida, regresión múltiple e imputación por el algoritmo Esperanza-Maximización (EM) con y sin variables auxiliares. Los resultados indican que la recuperación de los datos es más precisa cuando se emplea una combinación adecuada de diferentes métodos de recuperación de los datos perdidos. Cuando se trata de un caso incompleto funciona muy bien la media del sujeto, mientras que para datos completamente perdidos es recomendable la imputación múltiple con el algoritmo EM. El uso de esta combinación resulta especialmente recomendable cuando la pérdida de datos es mayor y su mecanismo de pérdida está más condicionado. Finalmente, se discuten los resultados y se comentan algunas líneas futuras de investigación que se abren a partir de los resultados obtenidos.

Leer menos
Materias (TEE):
método de investigación; metodología; evaluación; sistema educativo; análisis estadístico; datos estadísticos; psicometría
Otras Materias:
Asturias (Comunidad Autónoma)
Ministry logo
AndalucíaAragónPrincipado de AsturiasIslas BalearesIslas CanariasCantabriaCastilla y LeónExtremaduraGaliciaComunidad de MadridRegión de MurciaComunidad Foral de NavarraPaís VascoLa Rioja
Indexed inDspaceOpenaireOpen-doarRecolectaUniversiaHispanaGoogle ScholarBielefeld Academic Search Engine
Redined | Legal notice | Accesibility | Contact us | suggestions
RSSShare
 

 

Redined does not provide access to the full text of all the documents described due to copyright reasons. If you are interested in accessing any of these resources, you can contact us through the email redinedDS@educacion.gob.es and we will try to help you.